Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Sci Rep ; 14(1): 5711, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459201

RESUMO

This study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L. casei) in the black raspberry (Rubus dolichocarpus) juice (BRJ) environment, and also the anti-adhesion activity against Salmonella typhimurium (S. typhimurium) in fermented black raspberry juice (FBRJ). Results showed significant anti-adhesion activity in Caco-2 epithelial cells. In the anti-adhesion process, lactic acid bacteria (LAB) improve intestinal health by preventing the adhesion of pathogens. Adding LAB to BRJ produces metabolites with bacteriocin properties. Major findings of this research include improved intestinal health, improved antidiabetic properties, inhibition of degradation of amino acids, and increase in the nutritional value of foods that have been subjected to heat processing by preventing Maillard inhibition, and inhibition of oxidation of foodstuff by increased antioxidant activity of BRJ. Both species of Lactobacillus effectively controlled the growth of S. typhimurium during BRJ fermentation. Moreover, in all tests, as well as Maillard's and α-amylase inhibition, L. gasseri was more effective than L. casei. The phenolic and flavonoid compounds increased significantly after fermentation by both LAB (p < 0.05). Adding Stevia extract to FBRJ and performing the HHP process showed convenient protection of phenolic compounds compared to heat processing.


Assuntos
Lacticaseibacillus casei , Lactobacillus gasseri , Probióticos , Rubus , Stevia , Humanos , Fermentação , Células CACO-2 , Extratos Vegetais/farmacologia
2.
ACS Synth Biol ; 13(3): 951-957, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335132

RESUMO

Lactic acid bacteria (LAB) are important for many biotechnological applications such as bioproduction and engineered probiotics for therapy. Inducible promoters are key gene expression control elements, yet those available in LAB are mainly based on bacteriocin systems and have many drawbacks, including large gene clusters, costly inducer peptides, and little portability to in vivo settings. Using Lactobacillus gasseri, a model commensal bacteria from the human gut, we report the engineering of synthetic LactoSpanks promoters (Pls), a collection of variable strength inducible promoters controlled by the LacI repressor from E. coli and induced by isopropyl ß-d-1-thiogalactopyranoside (IPTG). We first show that the Phyper-spank promoter from Bacillus subtilis is functional in L. gasseri, albeit with substantial leakage. We then construct and screen a semirational library of Phyper-spank variants to select a set of four IPTG-inducible promoters that span a range of expression levels and exhibit reduced leakages and operational dynamic ranges (from ca. 9 to 28 fold-change). With their low genetic footprint and simplicity of use, LactoSpanks will support many applications in L. gasseri, and potentially other lactic acid and Gram-positive bacteria.


Assuntos
Lactobacillales , Lactobacillus gasseri , Humanos , Lactobacillus gasseri/genética , Isopropiltiogalactosídeo/farmacologia , Lactobacillales/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética
3.
Microb Pathog ; 188: 106559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272328

RESUMO

Helicobacter pylori has been recognized as a true pathogen, which is associated with various gastroduodenal diseases, and gastric adenocarcinoma. The crosstalk between H. pylori virulence factors and host autophagy remains challenging. H. pylori can produce extracellular vesicles (EVs) that contribute to gastric inflammation and malignancy. Some probiotic strains have been documented to modulate cell autophagy process. This study was aimed to investigate the modulatory effect of cell-free supernatant (CFS) obtained from Lactobacillus gasseri ATCC 33323 on autophagy induced by H. pylori-derived EVs. EVs were isolated from two clinical H. pylori strains (BY-1 and OC824), and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The viability of AGS cells was assessed after exposure to different concentrations of H. pylori EVs, and L. gasseri CFS. Based on MTT assay and Annexin V-FITC/PI staining, 50 µg/ml of H. pylori EVs and 10 % v/v of L. gasseri CFS were used for further cell treatment experiments. Autophagy was examined using acridin orange (AO) staining, RT-qPCR analysis for autophagy mediators (LC3B, ATG5, ATG12, ATG16L1, BECN1, MTOR, and NOD1), and western blotting for LC3B expression. H. pylori EVs were detected to range in size from 50 to 200 nm. EVs of both H. pylori strains and L. gasseri CFS showed no significant effect on cell viability as compared to untreated cells. H. pylori EVs promoted the development of acidic vesicular organelles and the expression of autophagy-related genes (LC3B, ATG5, ATG12, ATG16L1, BECN1, and NOD1), and decreased the expression of MTOR in AGS cells at 12 and 24 h time periods. In addition, the production of LC3B was increased following 12 h of treatment in AGS cells. In contrast, L. gasseri CFS effectively inhibited EVs-induced autophagy, as evidenced by reduced acidic vesicular organelle formation and modulation of autophagy markers. Our study indicated that L. gasseri CFS can effectively suppress H. pylori EV-induced autophagy in AGS cells. Further investigations are required to decipher the mechanism of action L. gasseri CFS and its metabolites on autophagy inhibition induced by H. pylori.


Assuntos
Vesículas Extracelulares , Infecções por Helicobacter , Helicobacter pylori , Lactobacillus gasseri , Humanos , Helicobacter pylori/genética , Células Epiteliais , Autofagia , Serina-Treonina Quinases TOR , Infecções por Helicobacter/terapia
4.
Nutrients ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892560

RESUMO

Menopause is a significant phase in a woman's life. Menopausal symptoms can affect overall well-being and quality of life. Conventionally, hormone replacement therapy (HRT) is used to alleviate menopausal symptoms; however, depending on the conditions, HRT may lead to side effects, necessitating the exploration of alternative therapies with fewer side effects. In this study, we investigated the effects of a combination of soybean germ extract (S30) containing 30% (w/w) isoflavone and a probiotic, Lactobacillus gasseri (LGA1), on menopausal conditions in an ovariectomized (OVX) rat model. We evaluated the impact of S30+LGA on body weight, estrogen markers, uterine and bone health, vascular markers, and neurotransmitter levels. The results revealed that treatment with S30+LGA1 significantly improved body weight and uterine and bone health. Moreover, S30+LGA1 demonstrated promising effects on lipid profile, liver function, and vascular markers and positively impacted serotonin and norepinephrine levels, indicating potential mood-enhancing effects. In conclusion, S30+LGA1, possessing anti-menopausal effects in vitro and in vivo, can be recommended as a soy-based diet, which offers various health benefits, especially for menopausal women.


Assuntos
Lactobacillus gasseri , Ratos , Animais , Feminino , Humanos , Qualidade de Vida , Menopausa , Extratos Vegetais/farmacologia , Peso Corporal
5.
Food Funct ; 14(18): 8504-8520, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655696

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by dysregulation of lipid metabolism, insulin resistance, and gut microbiota disorder. Compared to drug interventions, probiotic interventions may have a more enduring effect without producing any side effects. Thus, the potential of probiotics as a therapeutic approach for diabetes and other metabolic disorders has gained increasing attention in recent years. In this study, we evaluated the therapeutic efficacy of Lactobacillus gasseri CKCC1913, a potential probiotic strain, in high-fat diet-induced insulin-resistant diabetes using the C57BL/6J mouse animal model. From the results, L. gasseri CKCC1913 has been shown to increase glucose tolerance, reduce fasting blood glucose levels in diabetic mice, and reduce the expression of pro-inflammatory cytokines, such as TNF-α and IL-6. Besides, L. gasseri CKCC1913 intervention effectively alleviated oxidative stress damage by increasing SOD activity, decreasing MDA levels, reducing insulin resistance, and improving dyslipidemia caused by diabetes. The potential mechanism of L. gasseri CKCC1913 in improving metabolic health and alleviating diabetes involves an increased abundance of beneficial bacteria, such as Parabacteroides merdae, which directly produce short-chain fatty acids that help regulate immune cells and reduce inflammation. SCFAs also enter the bloodstream and promote antioxidant enzyme activity in the liver, protecting against oxidative damage. Additionally, L. gasseri CKCC1913 influences local bacterial metabolism pathways, such as the superpathway of unsaturated fatty acid biosynthesis, leading to an increase in unsaturated fatty acids, increasing high-density lipoprotein cholesterol (HDL-C) levels and improving lipid metabolism and glucose control in diabetic mice. In summary, in this study, L. gasseri CKCC1913 and its potential impact on metabolic health highlight the promising potential of probiotics as a therapeutic approach for diabetes. Future research should focus on identifying the optimal dose and duration, investigating the long-term effects and mechanisms of action, and exploring the potential use of probiotics as an adjunct to other therapies or in preventing metabolic disorders.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lactobacillus gasseri , Animais , Camundongos , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Experimental/terapia , Fígado , Antioxidantes
6.
Front Immunol ; 14: 1125239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575226

RESUMO

Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.


Assuntos
Lactobacillus crispatus , Lactobacillus gasseri , Vaginose Bacteriana , Feminino , Humanos , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos , Lactobacillus/fisiologia , Metronidazol/uso terapêutico , Resultado do Tratamento , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
7.
Sci Rep ; 13(1): 12861, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553432

RESUMO

Periodontitis is an infectious inflammation in the gums characterized by loss of periodontal ligaments and alveolar bone. Its persistent inflammation could result in tooth loss and other health issues. Ixeris dentata (IXD) and Lactobacillus gasseri media (LGM) demonstrated strong antioxidant activity, which may prevent oxidative and inflammatory periodontitis. Here, IXD and LGM extracts were investigated for antioxidative activity against oral discomfort and evaluated for their synergistic effect against oxidative and inflammatory periodontitis in a mouse model. IXD/LGM suppressed pro-inflammatory cytokines like interleukin (IL)-1ß, IL-6, and TNF-α. Additionally, it reduced pro-inflammatory mediators, nitric oxide, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) and enhanced AKT, Nrf2, and HO-1 activation. Similarly, IXD/LGM treatment elevated osteogenic proteins and mRNAs; alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). Hematoxylin and Eosin (H&E) staining and micro-CT analysis confirm the positive impact of IXD/LGM on the periodontal structure and its associated inflammation. These findings demonstrate that IXD/LGM inhibits oxidative stress, periodontal inflammation, and its resultant alveolar bone loss in which Akt (also known as protein kinase B)-nuclear factor-erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1 (HO-1) signaling is involved. Thus, IXD/LGM is a potential candidate against oxidative/inflammatory stress-associated periodontitis.


Assuntos
Asteraceae , Lactobacillus gasseri , Periodontite , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Fator 2 Relacionado a NF-E2/metabolismo , Periodontite/prevenção & controle , Inflamação , Antioxidantes , Asteraceae/metabolismo , Heme Oxigenase-1
8.
J Zhejiang Univ Sci B ; 24(8): 734-748, 2023 Aug 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37551559

RESUMO

A growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of Lactobacillus gasseri LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of L. gasseri LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with L. gasseri LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by L. gasseri LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal ß|-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by L. gasseri LA39. Thus, our data revealed that L. gasseri LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that L. gasseri LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.


Assuntos
Ácidos e Sais Biliares , Lactobacillus gasseri , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Proteômica , Fígado/metabolismo , Biotransformação
9.
Anaerobe ; 82: 102761, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37467948

RESUMO

Membrane vesicles (MVs) are bioactive, nano-sized entities produced by all organisms. MVs of L. gasseri ATCC 19992 were isolated and their effect on the biofilms of vaginal pathogens, G. vaginalis and S. aureus was studied. The L. gasseri MVs resulted in significant disruption of biofilms of the vaginal pathogens.


Assuntos
Lactobacillus gasseri , Feminino , Humanos , Staphylococcus aureus , Vagina , Biofilmes
10.
Sci Rep ; 13(1): 12212, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500806

RESUMO

Probiotics are defined as live organisms in the host that contribute to health benefits. Lactobacillus gasseri LM1065, isolated from human breast milk, was investigated for its probiotic properties based on its genome. Draft genome map and de novo assembly were performed using the PacBio RS II system and hierarchical genome assembly process (HGAP). Probiotic properties were determined by the resistance to gastric conditions, adherence ability, enzyme production, safety assessment and mobile genetic elements. The fungistatic effect and inhibition of hyphae transition were studied using the cell-free supernatant (CFS). L. gasseri LM1065 showed high gastric pepsin tolerance and mild tolerance to bile salts. Auto-aggregation and hydrophobicity were measured to be 61.21% and 61.55%, respectively. The adherence to the human intestinal epithelial cells was measured to be 2.02%. Antibiotic-resistance genes and putative virulence genes were not predicted in the genomic analysis, and antibiotic susceptibility was satisfied by the criteria of the European Food Safety Authority. CFS showed a fungistatic effect and suppressed the tricarboxylic acid cycle in Candida albicans (29.02%). CFS also inhibited the transition to true hyphae and damaged the blastoconidia. This study demonstrates the essential properties of this novel probiotic, L. gasseri LM1065, and potential to inhibit vaginal C. albicans infection.


Assuntos
Lactobacillus gasseri , Probióticos , Feminino , Humanos , Lactobacillus gasseri/fisiologia , Intestinos , Antibacterianos/farmacologia , Indústria Alimentícia , Probióticos/farmacologia
11.
Braz J Microbiol ; 54(3): 2047-2062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37430135

RESUMO

This study aimed to compare the effects of the probiotic bacteria, L. gasseri (52b), L. plantarum (M11), L. acidophilus (AC2), and L. fermentum (19SH), isolated from human source and traditional food products on the modulation of the immune system and inflammatory response on BALB/c mouse model bearing CT26 tumor. Five groups of female inbred BALB/c mice were orally administered with the probiotics and their mixes (MIX, at a 1:1 ratio) at varying dosages (1.5 × 108 cfu/ml and 1.2 × 109 cfu/ml) before and after the injection of a subcutaneous CT26 tumor over the course of 38 days via gavage. Finally, their effects on the tumor apoptosis and the cytokine levels in spleen cell cultures were analyzed and compared. M11, MIX, and 52b groups had the greatest levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) production. The highest production level of granzyme B (GrB) was related to the MIX and 52b groups. Moreover, these groups showed the lowest production level of (IL-4) and transforming growth factor beta (TGF-ß). Furthermore, the groups of MIX and 52b demonstrated the greatest amount of lymphocyte proliferation of spleen cells in response to the tumor antigen. The delayed-type hypersensitivity (DTH) response significantly increased in the groups of MIX and 52b compared with the control (p < 0.05). The findings demonstrated that the oral treatment of the human strain (52b) and the combination of these bacteria generated strong T helper type 1 (Th1) immune responses in the tumor tissue of the tumor-bearing mice, which led to the suppression of the tumor development.


Assuntos
Lactobacillus gasseri , Lactobacillus plantarum , Limosilactobacillus fermentum , Neoplasias , Probióticos , Humanos , Camundongos , Feminino , Animais , Lactobacillus acidophilus , Imunidade , Probióticos/farmacologia
12.
Clin Nutr ; 42(8): 1314-1321, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413809

RESUMO

BACKGROUND & AIM: The gut-brain axis is one of the proposed interactions between the brain and peripheral intestinal functions; of particular interest is the influence of food components on the gut-brain axis mediated via the gut microbiome. Probiotics and paraprobiotics have been proposed to interact with the intestinal environment and provide health benefits such as improving sleep quality. The aim of this research was to undertake a systematic literature review and meta-analysis to evaluate the current evidence regarding the effects of Lactobacillus gasseri CP2305 on sleep quality for the general population. METHODS: A systematic literature search was conducted of peer-reviewed articles published up to 04 November 2022. Randomised controlled trials were identified that investigated the effects of Lactobacillus gasseri CP2305 on sleep parameters in adults. Meta-analysis of the change in the Pittsburgh Sleep Quality Index (PSQI) global score was conducted. Quality assessments of individual studies were conducted using the Cochrane Risk of Bias and Health Canada tools. RESULTS: Seven studies were included in the systematic literature review; six studies included data for meta-analysis to quantify the effect of L. gasseri CP2305 on sleep quality. The ingestion of L. gasseri CP2305 resulted in significant improvement in the PSQI global score compared to control (-0.77, 95% CI: -1.37 to -0.16, P = 0.01). In the two studies that included electroencephalogram (EEG) data, output was significantly improved for at least half of the measured EEG outcomes after consumption of L. gasseri CP2305. No serious concerns were found in the potential biases of included studies, indirectness of the included evidence, and other methodological issues. CONCLUSION: The present systematic review and meta-analysis indicates significant improvement in sleep quality of adults with mild to moderate stress as an effect of daily consumption of L. gasseri CP2305. Based on existing evidence, the relationship between L. gasseri CP2305 and enhanced sleep quality is plausible, however further investigations are required to confirm the mechanisms of actions for this effect.


Assuntos
Microbioma Gastrointestinal , Lactobacillus gasseri , Probióticos , Humanos , Adulto , Qualidade do Sono , Sono
13.
Enzyme Microb Technol ; 169: 110276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321015

RESUMO

Lactobacillus contribute to maintain the human healthy and use for nutritional additives as probiotics. In this study, a cholesterol-lowering bacterium, Lactobacillus gasseri TF08-1, was isolated from the feces of a healthy adolescent, and its probiotic potentials were evaluated through genomic mining and in vitro test. The assembled draft genome comprised of 1,974,590 bp and was predicted total of 1,940 CDSs. The annotation of the genome revealed that L. gasseri TF08-1 harbored abundant categories of functional genes in metabolic and information processing. Moreover, strain TF08-1 has capacity to utilize D-Glucose, Sucrose, D-Maltose, Salicin, D-Xylose, D-Cellobiose, D-Mannose, and D-Trehalose, as the carbon source. The safety assessment showed strain TF08-1 contained few antibiotic resistance genes and virulence factors and was only resistant to 2 antibiotics detected by antimicrobial susceptibility test. A high bile salt hydrolase activity was found and a cholesterol-reducing effect was determined in vitro, which the result showed a remarkable cholesterol removal capability of L. gasseri TF08-1 with an efficiency of 84.40 %. This study demonstrated that the strain showed great capability of exopolysaccharide production, and tolerance to acid and bile salt. Therefore, these results indicate that L. gasseri TF08-1 can be considered as a safe candidate for probiotic, especially its potential in biotherapeutic for metabolic diseases.


Assuntos
Lactobacillus gasseri , Probióticos , Adolescente , Humanos , Lactobacillus gasseri/genética , Lactobacillus/genética , Fezes/microbiologia , Colesterol , Antibacterianos , Probióticos/metabolismo
14.
Food Funct ; 14(9): 4106-4116, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039235

RESUMO

Sulfated polysaccharides from sea cucumber Stichopus japonicus (SCSPsj) have been found to modulate the gut microbiota by promoting the growth of probiotics. However, the effects of the combination of SCSPsj and probiotics are still less known. Thus, the present study aimed to investigate the effects of SCSPsj and Lactobacillus gasseri on gut microbiota-altered mice through gut microbiota and metabolomics analysis. In the present study, supplementation with SCSPsj, L. gasseri or the combination of SCSPsj and L. gasseri could effectively ameliorate the body weight gain and fat accumulation in gut microbiota-altered mice treated with low-dose penicillin. The better effect of the combination of SCSPsj and L. gasseri is attributed to the synergistic effect of SCSPsj and L. gasseri. 16S rRNA sequencing revealed that the combination of SCSPsj and L. gasseri can synergistically improve gut microbiota dysbiosis by increasing Lactobacillus and reducing Coriobacteriaceae_UCG-002. Furthermore, metabolomics results revealed that the combination of SCSPsj and L. gasseri can alleviate metabolic disorders by reducing the levels of lipid and lipid-like molecules in the serum samples, such as trans-vaccenic acid and 3ß-hydroxy-5-cholestene. Our findings have proved that the combination of SCSPsj and L. gasseri can benefit host health attributed to the synergistic effect, which is conducive to further application in functional food.


Assuntos
Microbioma Gastrointestinal , Lactobacillus gasseri , Probióticos , Pepinos-do-Mar , Stichopus , Camundongos , Animais , Sobrepeso , Sulfatos/farmacologia , RNA Ribossômico 16S/genética , Polissacarídeos/farmacologia , Lipídeos/farmacologia , Probióticos/farmacologia
15.
Microb Cell Fact ; 22(1): 45, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890519

RESUMO

BACKGROUND: Exopolysaccharides (EPS) secreted by beneficial lactobacilli exert a plethora of positive activities, but little is known about their effects on biofilms of opportunistic vaginal pathogens and especially on biofilms of lactobacilli themselves. Here, the EPS produced by six vaginal lactobacilli, belonging to Lactobacillus crispatus (BC1, BC4, BC5) and Lactobacillus gasseri (BC9, BC12, BC14) species were isolated from cultural supernatants and lyophilized. RESULTS: Lactobacillus EPS were chemically characterized in terms of monosaccharide composition by liquid chromatography (LC) analysis coupled to UV and mass spectrometry (MS) detection. Moreover, the ability of EPS (0.1, 0.5, 1 mg/mL) to stimulate the biofilm formation of lactobacilli and to inhibit the formation of pathogens' biofilms was evaluated by crystal violet (CV) staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Isolated EPS (yields 133-426 mg/L) were heteropolysaccharides mainly composed of D-mannose (40-52%) and D-glucose (11-30%). For the first time we demonstrated that Lactobacillus EPS were able to stimulate in a dose-dependent manner (p < 0.05) the formation of biofilms of ten strains belonging to L. crispatus, L. gasseri and Limosilactobacillus vaginalis species, in terms of cell viability (84-282% increase at 1 mg/mL) and especially biofilm biomass (40-195% increase at 1 mg/mL), quantified with MTT assay and CV staining, respectively. EPS released from L. crispatus and L. gasseri were found to better stimulate the biofilms of the same producer species rather than that of other species, including producing strains themselves and other strains. Conversely, the biofilm formation of bacterial (Escherichia coli, Staphylococcus spp., Enterococcus spp. and Streptococcus agalactiae) and fungal (Candida spp.) pathogens was inhibited. The anti-biofilm activity was dose-dependent and was more marked for L. gasseri-derived EPS (inhibition up to 86%, 70%, and 58% at 1 mg/mL, 0.5 mg/mL, and 0.1 mg/mL, respectively), whilst L. crispatus-derived EPS resulted overall less efficient (inhibition up to 58% at 1 mg/mL and 40% at 0.5 mg/mL) (p < 0.05). CONCLUSIONS: Lactobacilli-derived EPS favour the biofilm formation of lactobacilli preventing, at the same time, that of opportunistic pathogens. These results support the possible employment of EPS as postbiotics in medicine as a therapeutic/preventive strategy to counteract vaginal infections.


Assuntos
Lactobacillus gasseri , Lactobacillus , Vagina/microbiologia , Biofilmes , Candida , Violeta Genciana/farmacologia
16.
Nutrients ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839197

RESUMO

Probiotics have received wide attention as a potential way to alleviate gastrointestinal (GI) motility disorders. Herein, we investigated the effects of Lacticaseibacillus paracasei JY062, Lactobacillus gasseri JM1, and the probiotic combination at 5 × 109 CFU/mL on mice induced by loperamide and explored the possible underlying mechanisms in GI motility disorder. After two weeks of probiotic intervention, the results indicated that the probiotic combination alleviated GI motility disorder better. It increased the secretion of excitatory GI regulators motilin, gastrin, and 5-hydroxytryptamine (5-HT) and decreased the secretion of the inhibitory GI regulators peptide YY and nitric oxide (NO), except vasoactive intestinal peptide. 5-HT and NO were related to the mRNA expression of 5-HT4 receptor and nitric oxide synthase, respectively. The intervention of probiotic combination also increased the number of interstitial cells of Cajal and the expression of SCF/c-kit protein. In addition, it also increased the abundance of beneficial bacteria (Lactobacillus, Rikenellaceae, and Clostridiaceae_Clostridium) and improved the contents of short-chain fatty acids in cecum contents of mice. In conclusion, the probiotic combination of L. paracasei JY062 and L. gasseri JM1 has the potential to alleviate GI motility disorders by balancing intestinal homeostasis.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Lactobacillus gasseri , Probióticos , Animais , Camundongos , Lacticaseibacillus , Serotonina , Probióticos/farmacologia , Motilidade Gastrointestinal
17.
Nutrients ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771498

RESUMO

Aging-related gut microbiota dysbiosis initiates gut inflammation and microbiota dysbiosis, which induce the occurrence of psychiatric disorders including dementia. The alleviation of gut microbiota dysbiosis by probiotics is suggested to be able to alleviate psychiatric disorders including cognitive impairment (CI). Therefore, to understand how probiotics could alleviate CI, we examined the effects of anti-inflammatory Lactobacillus gasseri NK109 and its supplement (NS, mixture of NK109 and soybean embryo ethanol extract) on cognitive function in aged (Ag), 5XFAD transgenic (Tg), or mildly cognition-impaired adult fecal microbiota (MCF)-transplanted mice. Oral administration of NK109 or NS decreased CI-like behaviors in Ag mice. Their treatments suppressed TNF-α and p16 expression and NF-κB-activated cell populations in the hippocampus and colon, while BDNF expression was induced. Moreover, they partially shifted the ß-diversity of gut microbiota in Ag mice to those of young mice: they decreased Bifidobacteriaceae, Lactobacillaceae, and Helicobacteriaceae populations and increased Rikenellaceae and Prevotellaceae populations. Oral administration of NK109 or NS also reduced CI-like behaviors in Tg mice. Their treatments induced BDNF expression in the hippocampus, decreased hippocampal TNF-α and Aß expression and hippocampal and colonic NF-κB-activated cell populations. NK109 and NS partially shifted the ß-diversity of gut microbiota in Tg mice: they decreased Muribaculaceae and Rhodospiraceae populations and increased Helicobacteriaceae population. Oral administration of NK109 or NS decreased MCF transplantation-induced CI-like behaviors in mice. NK109 and NS increased hippocampal BDNF expression, while hippocampal and colonic TNF-α expression and NF-κB-activated cell populations decreased. These findings suggest that dementia can fluctuate the gut microbiota composition and NK109 and its supplement NS can alleviate CI with systemic inflammation by inducing BDNF expression and suppressing NF-κB activation and gut microbiota dysbiosis.


Assuntos
Disfunção Cognitiva , Demência , Microbioma Gastrointestinal , Lactobacillus gasseri , Camundongos , Animais , NF-kappa B/metabolismo , Lactobacillus gasseri/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disbiose , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Disfunção Cognitiva/terapia , Camundongos Transgênicos , Inflamação , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768377

RESUMO

Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Lactobacillus gasseri , Probióticos , Peixe-Zebra , Animais , Colesterol/análise , Colesterol/metabolismo , Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Lactobacillus gasseri/metabolismo , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Transcriptoma , Peixe-Zebra/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Larva/genética
19.
Probiotics Antimicrob Proteins ; 15(2): 275-286, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34417721

RESUMO

In this study, Lactobacillus crispatus UBLCp01, Lactobacillus gasseri UBLG36, and Lactobacillus johnsonii UBLJ01 isolated from the vagina of healthy reproductive age Indian women were screened for beneficial probiotic properties. These strains showed the ability to survive acidic and simulated vaginal fluid conditions and could adhere to mucin. Lact. gasseri UBLG36, and Lact. johnsonii UBLJ01 produced D- and L-lactic acid, whereas Lact. crispatus UBLCp01 produced hydrogen peroxide and D- and L-lactic acid. All strains inhibited the growth of pathogens (Escherichia coli, Gardnerella vaginalis, Proteus mirabilis, and Candida albicans) and were capable of co-aggregating with them with varying degrees. Strains secreted exopolysaccharides and formed biofilms under in vitro conditions. Safety assessment showed that these strains had a usual antibiotic susceptibility profile, did not produce hemolysins, gelatinases, and mucin degrading enzymes. Based on strain characteristics and beneficial properties, we believe that these strains are promising candidates for human trials to confirm their ability to prevent/treat vaginal dysbiosis and maintain a healthy vaginal eco-system.


Assuntos
Lactobacillus crispatus , Lactobacillus gasseri , Lactobacillus johnsonii , Probióticos , Feminino , Humanos , Lactobacillus , Vagina , Probióticos/farmacologia , Escherichia coli , Ácido Láctico
20.
Probiotics Antimicrob Proteins ; 15(5): 1092-1101, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639267

RESUMO

Allergic inflammation refers to a hyperimmune reaction that causes hypersensitivity responses such as hives, itchiness, runny nose, and cough due to specific allergens. Allergic diseases are known to be influenced by the diversity and distribution of intestinal microbiota, and Lactobacill is known to relieve allergic symptoms by modulating cytokines secreted by T helper type 1 (Th1)/Th2 cells. This study was designed to investigate the effects of Lactobacillus gasseri MG4247 and Lacticaseibacillus paracasei MG4272, MG4577, and MG4657 on levels of pro-inflammatory cytokines and proteins associated with allergic symptoms in RAW 264.7 macrophages, and RBL-2H3 mast cells, as well as their probiotic properties. MG4247, MG4272, and MG4577 significantly reduced tumor necrosis factor-α and interleukin (IL)-6 levels in LPS-induced RAW 264.7 macrophages, and markedly decreased IL-4, IL-5, and IL-13 levels and STAT6 phosphorylation in DNP-IgE/HSA sensitized RBL-2H3 mast cells. Furthermore, MG4247, MG4272, and MG4577 tolerated the acidic condition with pepsin and basic condition with bile salt, and showed a high adhesion rate (≥ 73.9%). In safety evaluation, MG4247, MG4272, and MG4577 showed no hemolytic or bile salt hydrolase activity and no cytotoxicity to HT-29 cells (≥ 96.7%). Hence, MG4272, MG4272, and MG4577 can be used as candidate probiotic strains to relieve cytokines associated with allergic inflammation.


Assuntos
Hipersensibilidade , Lactobacillus gasseri , Ratos , Humanos , Lacticaseibacillus , Imunoglobulina E/metabolismo , Hipersensibilidade/tratamento farmacológico , Citocinas/metabolismo , Interleucina-6 , Inflamação/tratamento farmacológico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...